聯(lián)系電話:
010-5637 0168-696
與單晶或多晶Ga2O3相比,非晶Ga2O3材料具有明顯的成本優(yōu)勢。本研究開發(fā)出了一種具有超高性能和柵極可調光檢測能力的非晶Ga2O3日盲場效應光電晶體管,并對其光電性能進行了全面調研。射頻磁控濺射用于在經(jīng)濟的Si/SiO2襯底上沉積非晶GaOx薄膜。通過施加適當?shù)谋硸烹妷海?/font>VG),可以很好地控制場效應光電晶體管的光電性能和暗電流。制成的日盲型GaOx薄膜場效應光電晶體管具有出色的深紫外光光電探測特性,包括4.1×103 AW-1的超高光敏性,2.5 ×1013Jones的高探測率,以及*的外量子效率。在70 µW cm-2的254 nm的弱光照下,外量子效率為2×106%,光電導增益為1.6×107 。還揭示了光檢測特性取決于偏置電壓和光強度。另外,成功地展示了GaOx光電晶體管作為感測像素的日盲成像功能。獲得了目標的清晰圖像,這是有關非晶GaOx 探測器日盲成像的第一次報道。這些結果,加上其易于制造和低成本,使得該日盲非晶GaOx薄膜場效應光電晶體管有望用于下一代光電成像應用。
柵極可調光檢測能力的非晶Ga2O3日盲場效應光電晶體管如圖1所示。為了確定非晶GaOx膜的特性,進行了X射線衍射(XRD),掃描電子顯微鏡(SEM)和原子力顯微鏡(AFM)測量,實驗表明,沉積的GaOx膜具有平坦表面和高均勻性。
圖1.非晶態(tài)GaOx薄膜場效應光電晶體管的結構示意圖和非晶態(tài)GaOx薄膜的物理特性。(a)制成的GaOx光電晶體管的橫截面圖像(b)濺射沉積的非晶態(tài)GaOx薄膜的X射線衍射曲線,(c)截面掃描電子顯微鏡圖像,(d) 二維原子力顯微鏡圖像。
圖2(a)展示了濺射非晶GaOx薄膜的O1s軌道能級的X射線光電光譜光譜(XPS)。根據(jù)高斯擬合分析法,O1s峰通??梢苑譃槿齻€分量:O?,O??,和O???。峰面積用于表征每種成分的強度,強度比經(jīng)計算為O??/(O?+O??)=59.3%,這表明濺射非晶GaOx膜中存在許多氧空位。為了進一步表征濺射非晶GaOx膜的材料特性,一種具有Au(50nm)/Ti(20nm)GaOx(200nm)/Ti(20nm)/Au夾心金屬-絕緣體金屬結構的器件(50nm)被制造并且在黑暗中測量其電特性。使用空間電荷限制電流(SCLC)模型擬合I-V曲線,并計算非晶態(tài)GaOx膜的缺陷密度和載流子遷移率。如圖2(b)所示,雙對數(shù)I-V曲線可分為三種狀態(tài):1)歐姆區(qū)域,斜率為1;2)陷阱填充區(qū)域,斜率超過3;以及3)無陷阱區(qū)域,斜率為2。
圖2. 濺射非晶GaOx膜的X射線光電光譜光譜和基本電學特性。(a) XPS O1s核心級光譜,(b)黑暗環(huán)境下雙對數(shù)坐標的I-V曲線以及與空間電荷限制電流(SCLC)模型的擬合。插圖顯示了測試結構的橫截面圖。
為了探索非晶GaOx薄膜光電晶體管的光電特性,在254 nm 深紫外光光照射下進行了光電性能測量,如圖3所示。在測量過程中,重復打開和關閉深紫外光,器件在重復操作過程中顯示出出色的可重復性和穩(wěn)定性。上升時間τr和衰減時間τd分別為50秒和400秒以上。通過比較這些值,我們繪制了響應度和EQE作為VG的函數(shù),如圖3(e)所示。顯然,當VG從−40 V增加到20 V時,R和EQE減小,這表明了VG對光電性能的出色調制能力,實際應用中,關注的工作機制是GaOx光電晶體管的耗盡區(qū)域。圖3(f)顯示在VG=−30 V和VDS = 2 V時該器件的歸一化光譜響應。該器件在約240 nm處達到其峰值響應度。截止波長為280nm。紫外線/可見光的拒絕比率(R240/R400)約為1×102 ,這表明光電探測器對日盲紫外線具有相對較高的光譜選擇性。
圖3. 非晶態(tài)GaOx薄膜光電晶體管的電氣和光電特性。(a)不同VDS下測得的IDS-VG傳輸特性。(b) 暗環(huán)境下,IDS-VDS的輸出特性 (c)在不同VG下測得的IDS-VDS輸出特性。(d)隨時間變化的光響應。(e)在不同的VG下的響應度(R)和外部量子效率(EQE)。(f)歸一化的光譜響應度。插圖顯示了對數(shù)標度的響應光譜。
除了柵極電壓以外,光響應特性還受光強度的影響,如圖4(a)所示,光電流隨著光強度的增加而增加。此外,研究了不同光強度下隨時間變化的光響應特性,圖4(b),同時,在隨時間變化的光響應曲線中,還發(fā)現(xiàn)光電流隨著光強度的降低而降低。如圖4(c)所示,隨著光強度從22 µW cm-2增加到87 µW cm-2的探測率,響應度和EQE降低,與以前的報道相似。這種現(xiàn)象可能部分歸因于熱效應引起的載流子散射,部分歸因于非晶GaOx薄膜在高光強度下的吸收飽和。
圖4.光強度對光電性能的影響。(a)在不同光強度下IDS-VDS特性。(b)在不同光強度下器件隨時間變化的光響應。(c)光電流和探測率為光強度的函數(shù)。(d)響應度和EQE與光強度的關系。
為了驗證成像感測功能,使用非晶GaOx薄膜光電晶體管作為感測像素,實現(xiàn)了投影到日盲成像系統(tǒng)上的光學圖案的識別。成像系統(tǒng)的示意圖如圖5(a)所示。GaOx光電探測器被用作單點狀成像元件以檢測深紫外光光。由于所制造的非晶態(tài)GaOx光電探測器的超高性能和出色的穩(wěn)定性,獲得了清晰的字母“CAS”圖像。圖5(d)紅色虛線的灰度值,表明通過將非晶GaOx光電晶體管用作感測像素可以實現(xiàn)具有高保真度的清晰圖像。這些結果為制備用于實時成像的Ga2O3成像陣列鋪平了道路,并使Ga2O3 深紫外光光電探測器成為將來有前景先進光電系統(tǒng)的組成部分。
圖5. 非晶態(tài)GaOx薄膜光電晶體管的日盲UV成像。(a)使用基于非晶Ga2O3的光電晶體管作為感應像素的日盲成像系統(tǒng)的示意圖。(b)在光罩上帶有字母“ CAS”的物體圖像。(c)從日盲成像系統(tǒng)獲得的圖像。(d)沿(c)中標記的線的灰度值。
本研究中的非晶GaOx薄膜光電晶體管的主要參數(shù),例如響應度,探測率,外量子效率和光電導增益,均比基于二維 β-Ga2O3納米片、Ga2O3納米帶、以及Ga2O3納米線和微米線探測器好得多。此外,非晶GaOx光電晶體管還比基于薄膜Ga2O3的MSM PD表現(xiàn)出更好的性能。如此高的性能以及低成本和易于制造的工藝,使得非晶GaOx薄膜光電晶體管在未來的光電系統(tǒng)中具有很大的潛力,可用于陣列光電探測器和成像器。
中國科學技術大學龍世兵教授課題組簡介
課題組主要從事寬禁帶半導體氧化鎵材料的生長,器件開發(fā),包括電力電子器件以及紫外探測器件,功率器件模組以及成像系統(tǒng)的開發(fā)。主要期望通過優(yōu)化器件結構的設計,以及完善工藝開發(fā),制備更高性能的功率器件和深紫外探測器件,實現(xiàn)更高的擊穿電壓,更低的導通電阻,更高的響應度和更快的響應速度等。截止目前,龍世兵教授主持國家自然科學基金、科技部(863、973、重大專項、重點研發(fā)計劃)、中科院等資助科研項目15項。在Adv. Mater., ACS Photonics,IEEE Electron Device Lett.等國際學術期刊和會議上發(fā)表論文100余篇,SCI他引6300余次,H指數(shù)44。
這一成果以“Amorphous Gallium Oxide-Based Gate-Tunable High-Performance Thin Film Phototransistor for Solar-Blind Imaging”為題發(fā)表在Advanced Electronic Materials上, 中國科學技術大學覃愿為第一作者,龍世兵教授為通訊作者。,
文章信息:Advanced Electronic Materials, 2019, 5, 1900389.
北京卓立漢光儀器有限公司公眾號所發(fā)布內(nèi)容(含圖片)來源于原作者提供或原文授權轉載。文章版權、數(shù)據(jù)及所述觀點歸原作者原出處所有,北京卓立漢光儀器有限公司發(fā)布及轉載目的在于傳遞更多信息及用于網(wǎng)絡分享。
如果您認為本文存在侵權之處,請與我們聯(lián)系,會第一時間及時處理。我們力求數(shù)據(jù)嚴謹準確,如有任何疑問,敬請讀者不吝賜教。我們也熱忱歡迎您投稿并發(fā)表您的觀點和見解。
技術支持:化工儀器網(wǎng) 管理登陸 網(wǎng)站地圖